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A new method for analyzing micro strip transmission

lines is presented. This method uses the superposition
1

of Green’s function on a Riemann surface and developed

from research into the Charge Simulation Method2. By

using this method , we can accurately calculate the

potential field around straight or curved strip

conductors which are essential in microwave transmission
lines. The remarkable features of this method are

1 an accuracy of 10-5 is easily achieved
2 the accuracy near the tip of strip conductors is the

same as that of an ordinary point

3 this method is applicable to problems which contain
many straight or curved strip conductors

4 the error estimation is easy and

5 the computing time is very short.

As examples, some microwave transmission lines in a

homogeneous medium are analyzed in TEM mode.

1 Introduction
The charge simulation method2( we will call this CSM

hereafter) is a superposition method of Green’s
function. It corresponds to the boundary method and

collocation method in terms of the Method of Weighted
Residuals. The CSM is not considered to be straight-

forward, because contour points and source points must

be determined by trial and error. However the estimation

of error in the CSM is very simple, because only the

value on the boundary need be compared with the boundary

conditionsince it is here the maximum error appears. A

high degree of accuracy can be easily obtained if the
shape of the boundary concerned is not too complicated.
Its evident and essential defect is that error becomes

great for the exterior problem of very thin region,
because of the singularity of the Green’s function. To

overcome this difficulty , a Riemann surface associated
with the two–valued complex transformation z=(t+l/t)/2

is used. The shape of the branch cut is chosen such that

it coincides with the shape of the strip conductor in

transmission lines. The poles of the Green’s functions

are placed on one of the two sheets of Riemann surface

and their influence on the other sheet is superposed
similarly to the ordinary CSM. By using this complex

transformation , the curved arc without area is trans-
formed into a closed line with wide area. We can then

keep the poles of Green’s function apart from the
boundary. This fact enables us to reduce the influence

of the singularity of Green’s function. This method is

suitable for solving the exterior potential problems

2 Green’s Functions On A Riemann Surface
At first, We would like to explain the complex

transformation z=(t+l/t)/2 which is essential in this
paper. By simple reduction , we obtain the inverse
transformation

t=z+

t=z-

where r 22-1 is

~~at 2=2 . The

two z-planes as

_ ..__

/2z-1 (1)

.—/T_
z–l (2)

the complex function that takes the value

Riemann surface that we need consists of

shown in Fi.g.l(a). The branch cut(curved

line) which connects two points A(-1,0) and B(l,O) is

transformed into a closed line on the t–plane as

depicted in Fig.l(b) by above transformation equations.
One of the two sheets of the Riemann surface is trans-

formed into the outer region of the closed line by eq.(1)

and the other sheet is transformed into the inner
region of the closed line by eq.(2). We designate the
former sheet as sheet 1 and the latter one as sheet 2,

respectively. The Green’s function on the Riemann

surface is the image of the ordinary Green’s function

on the t–plane

G(t;tk) = l/2rLlog(t-tk) (3)

where t
k

means the pole of the Greens function and t is

the potential point. The image of eq.(3) on z-plane is

/7””-”J--2-1)Y(A)G(z;zk) = l/2t10g(Z+ Z -1 ‘Zk+ Zk

where we assumed tha’t z and zk are placed on sheet 1

and sheet 2 , respectively. In Fig.2 , the contour

maps of the real and imaginary parts of eq.(4) are shown.
Fig.2(a) and (b) correspond to the case of straight and

curved cut, respectively. As one can see easily from

these pictures , this Green’s function has nosingularity
around the point Zk hence the poles of this Green’s

function can be place anywhere. Also, these functions

are suitable for expressing different values at bath

sides of a curved boundary because it has a discontinuity

of very narrow regions like strip conductors. ———— _______<... .“ . . . , . . .

ISo far a number of semi analytical

and numerical methods have been applied

in the analysis of micro strip trans-
mission lines. These does not seem to

be an effective way of accurately

solving the problems which contain

strip conductors of arbitrary shape.
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Fig.1 Complex Transformation z=(t+l/t)/2
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along the branch cut. This two-

valued complex function is not

straightforward to calculate. A

simple way for calculating these
Green’s functions was given by the

1
author .

3 How To Use Green’s Function On
Riemann Surface

Here we consider a Dirichlet

problem of Laplace’s equation in

domain D which containes two very
narrow regions as its boundary as

shown in Fig.3. The shape of one
inner boundarv is verv narrow and

almost line. The other inner
boundary is also narrow and

(a) Straight cut (b) Curved cut

contains some area inside it. Fig2 Green’s function on a Riemann

But it has not enough area to
yield good accuracy by ordinary

CSM. The prescribed boundary value

on the outer boundary is VO , and the values on the
inner boundaries are VI and V2 , respectively. In Fig.3

charges are represented by three kinds of notations,

i.e., x , & ando . Their meanings are given by

A :Green’s function on the ordinary plane

A :Green’s function on the Riemann surface with two
branch points A and B

o :Green’s function on the Riemann surface with two

branch points C and D.

The number of these three kinds of Green’s functions,

i.e., the number of charges placed near each boundary,

are NO , N1 and N2 , respectively. The shapes of branch

cuts of above two different Riemann surface have to

coincide with the corresponding curved lines which

connects A and B or C and D as shown in Fig.3. The

solution to this problem is assumed by the

formulae
Id

where N=NO+N1+N2 and

G(z;Zk) = l/2E

(log (Z-zk) 0<k4N0

J
__-—. — . . ..—

\ log~z+~(z-A) (z-B)–zk+f(zk-A) (Zk-B)~,

— .. .—
‘,, log{z+~(z-C) (z-D) ‘Zk+~Zk-C)”(Zk-D) },

The unknown constants Q. are determined in

following

(5)

NO~k~NO+Nl

(6)

NO+Nl<keN.

a wav similar

to the ordinary CSM by”fmposing the boundary condition
at selected collocation points. It is obvious that this
technique is applicable to the problem in a region
that contains many narrow boundaries of arbitrary shape.

h On The Error Estimation in CSM

The remarkable feature of the CSM is that3 the

maximum value of absolute error can be easily obtaind

simply by comparing the computed value with the

boundary condition because of maximum value principle

error. In Fig.4 , ? typical contour map of error
distribution in CSM solution for a parallel condenser

shown. In this figure the number +6 and –5 associated

-6with contour lines denote errors of +10 -5
and –10

respectively. In this analysis the boundarv conditi;n

of

is

at
center line(y=O) of two parallel electrodes is satisfied
analytically by using the image method. Hence the only
boundary on which we have to impose conditions is the

surface Y .<

.:
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Fig.3 How to use Green’s functions
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Fig.4 A typical error distribution in CSFl solution

for parallel condenser. The straight line which
connects points(O,l) and (1,1) is electrode.

electrode of condenser. One can easily recognize that

the maximum absolute error appears on this electrode.

Usually the error becomes large at the middle of

adjacent contour points so we take the following value
as the measure of average error

_..-

(7)

where E
k

is the error at the middle point between the

k and k+l th contour points.
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5 Numerical Examples

5.1 Cylindrical–coaxial strip transmission line
In Fig.5, a cross-sectional view of the cylindrical-

coaxial strip transmission line with x-y coordinate
system is shown. The straight strip of width 2 is

located inside a shielded cylinder of radius 2. The

strip in a homogeneous dielectric of permittivity ~ois

charged to @=lv. The contour points on the strip are

determined in the t–plane by dividing the unit circle

into N1 equal parts where N1 is the number of contour

points placed on the strip( the same as the number of

charge points on the sheet 2 of Riemann surface).
When this unit circle contracts by the ratio R1 , we

designate the position to which the contour points
move as charge points. In the practical calculation ,

all data are given by the value on the z-plane. Hence,
contour points have values on the straight line which
connects the point (-1,0) and (1,0) while charge points

are pieced on a elliptic circle with foci of(-1,0) and

(1,0). The contour points on the outer cylinder are

determined by dividing the outer circle into N2 equal

parts and so on.

The characteristic impedance of microstrip trans-

mission line in a homogeneous dielectric is evaluated

from the electric charge on the strip conductor. It is

easily shown that this value is equal to the summation

of charges Qk on Riemann surface. The line capacitance

CO is
N1

CO=k~ Qk/$ , (8)

and the characteristic impedance ZO is

20 = llcofvo , (9)

where VO is the velocity of light in free space. When

N1 =16,N2=24,R1=0.1 and R2=0.5, the capacitance 20C0 =

4.558728405900 is obtained. The accuracy of this value

-lo
is higher than 10 .

5.2 Rectangular-coaxial strip transmission line4
Fig.6 shows the cross-section of the rectangular-

coaxial transmission line and its characteristic
impedance ZO against W/b for a/tJ=2. The arrangement of

contour and charge points near and on the strip is the
same as that in the previous case. Table 1 shows a

comparison of the calculated values of 20 for several

a/b and W/b and those obtained by Tippet and Chang

using a conformal reaping method.

5.3 Cylindrical-coaxial strip transmission line5 with a
circular arc strip

This technique is also applicable for curved strips.

In Fig.7, the cross-section of a cylindrical-coaxial

line with a circularly curved strip and its character-
istic impedance ZO for various geometries are shown. In

the case of b/a=2 and c/a=l.5 , the calculated values
of ZO are 18.422, 26.479 and 47.075 for 2(= 90, 60 and

30, respectively.
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Fig.6 Cross-section of the rectangular-coaxial

transmission line and its characteristic
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Table I Comparison of calculated results

I \ Present lTippet& I

Case

--i

Chang(h)

Average potential
ajb w/b ZO(Q) error (%) Zo(rl)

t 1 1 ! 1 I

I 1 10.80[ 54.6361 0.034 I 54.54 I
I , I

1 1 0.50 87.038 0.014 87.03 1

2 0.50 99.841 0.008 99. S2

2 1.00 64 # lo4 0<012 64.10
4

1 I I I 1 I

$

~
90

a (DEGREES)

Fig. 7 Cross-section of the cylindrical–coaxial trans-

mission line and its characteristic impedance.

241


