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A new method for analyzing micro strip transmission
lines is presented. This method uses the superposition

; . 1
of Green's function on a Riemann surface™ and developed
p

from research into the Charge Simulation Methodz. By
using this method , we can accurately calculate the
potential field around straight or curved strip
conductors which are essential in microwave transmission
lines. The remarkable features of this method are

1 an accuracy of 10_5 is easily achieved

2 the accuracy near the tip of strip conductors is the
same as that of an ordinary point

3 this method is applicable to problems which contain
many straight or curved strip conductors

4 the error estimation is easy and

5 the computing time is very short.

As examples, some microwave transmission lines in a

homogeneous medium are analyzed in TEM mode.

1 Inttroduction 2
The charge simulation method” ( we will call this CSM
hereafter) is a superposition method of Green's
function. It corresponds to the boundary method and
collocation method in terms of the Method of Weighted
Residuals. The CSM is not considered to be straight-
forward, because contour points and source points must
be determined by trial and error. However the estimation
of error in the CSM is very simple, because only the
value on the boundary need be compared with the boundary
conditionsince it is here the maximum error appears. A
high degree of accuracy can be easily obtained if the
shape of the boundary concerned is not too complicated.
Its evident and essential defect is that error becomes
great for the exterior problem of very thin region,
because of the singularity of the Green's function. To
overcome this difficulty , a Riemann surface associated
with the two-valued complex transformation z=(t+1/t)/2
is used. The shape of the branch cut is chosen such that
it coincides with the shape of the strip conductor in
transmission lines. The poles of the Green's functions
are placed on one of the two sheets of Riemann surface
and their influence on the other sheet is superposed
similarly to the ordinary CSM. By using this complex
transformation , the curved arc without area is trans-
formed into a closed line with wide area. We can then
keep the poles of Green's function apart from the
boundary. This fact enables us to reduce the influence
of the singularity of Green's function. This method is
suitable for solving the exterior potential problems
of very narrow regions like strip conductors. r::“T_

2 Green's Functions On A Riemann Surface

At first, We would like to explain the complex
transformation z=(t+1/t)/2 which is essential in this
paper. By simple reduction , we obtain the inverse
transformation

z + /;é:fi
S

where {zz—l is the complex function that takes the value

t (n

t =

(2)

jgvat z=2 . The Riemann surface that we need consists of
two z-planes as shown in Fig.1(a). The branch cut(curved
line) which connects two points A(-1,0) and B(1,0) is
transformed into a closed line on the t-plane as
depicted in Fig.1(b) by above transformation equations.
One of the two sheets of the Riemann surface is trans-
formed into the outer region of the closed line by eq.(l)
and the other sheet is transformed into the inner

region of the closed line by eq.(2). We designate the
former sheet as sheet 1 and the latter one as sheet 2,
respectively. The Green's function on the Riemann
surface is the image of the ordinary Green's function

on the t-plane

G(t;tk) = 1/2R.10g(t—tk) (3

where tk

the potential point. The image of eq.(3) on z-plane is

means the pole of the Greens function and t is

1/201og (z+ |2~

o(z3 [zt oo ), (@)

W T

where we assumed that z and z, are placed on sheet 1
and sheet 2 , respectively. In Fig.2 , the contour
maps of the real and imaginary parts of eq.(4) are shown.
Fig.2(a) and (b) correspond to the case of straight and
curved cut, respectively. As one can see easily from
these pictures , this Green's function has nosingularity
around the point z, hence the poles of this Green's
function can be place anywhere. Also, these functions
are suitable for expressing different values at both
sides of a curved boundary because it has a discontinuity

So far a number of semi analytical
and numerical methods have been applied
in the analysis of micro strip trans-

mission lines. These does not seem to
be an effective way of accurately
solving the problems which contain
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strip conductors of arbitrary shape. |
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along the branch cut. This two-

Py
valued complex function is not N Y
straightforward to calculate. A N \
simple way for calculating these ( ///*T/
Green's functions was given by the . \\
N
author™. / S \

3 How To Use Green's Function On

A
Riemann Surface +05 |
Here we consider a Dirichlet ‘\

problem of Laplace's equation in

domain D which containes two very
narrow regions as its boundary as
shown in Fig.3. The shape of one

inner boundary is very narrow and
almost line. The other inner
boundary is also narrow and
contains some area inside it.

But it has not enough area to
yield good accuracy by ordinary
CSM. The prescribed boundary value
on the outer boundary is VO , and the values on the
inner boundaries are V1 and V2 , respectively. In Fig.3
, charges are represented by three kinds of notations,
i.e., X, A and 0. Their meanings are given by

X :Green's function on the ordinary plane

4 :Green's function on the Riemann surface with two
branch points A and B

o :Green's function on the Riemann surface with two
branch points C and D.

The number of these three kinds of Green's functions,
i.e., the number of charges placed near each boundary,
are NO , N1l and N2 , respectively. The shapes of branch
cuts of above two different Riemann surface have to
coincide with the corresponding curved lines which
connects A and B or C and D as shown in Fig.3. The
solution to this problem is assumed by the following
formulae
Y
¢ (x,y) = %éTQk Re§G(z;zk)§,

where N=NO+N1+N2 and

(5)

G(z;Zk) =1/2Fk

{ log (z—zk) 0<k&NO

log{z+/(z-A) (z-B) -z, + [(2,~A) (z,~B)}, NO<k =NO+NI
. (6)
| log{z+ j(‘zila)w(‘z—D)—zk-i- f(2,~C) (z,-D) }, NOHNI<k &N,

S

The unknown constants Q. are determined in a way similar
to the ordinary CSM by Imposing the boundary condition
at -selected collocation points. It is obvious that this
technique 1is applicable to the problem in a region

that contains many narrow boundaries of arbitrary shape.

4 On The Error Estimation in CSM

The remarkable feature of the CSM is that3 the
maximum value of absolute error can be easily obtaind
simply by comparing the computed value with the
boundary condition because of maximum value principle of
error. In Fig.4 , a typical contour map of error
distribution in CSM solution for- a parallel condenser is
shown. In this figure the number +6 and -5 associated

with contour lines denote errors of +10_6 and —10_5,

respectively. In this analysis the boundary condition at
center line(y=0) of two parallel electrodes is satisfied
analytically by using the image method. Hence the only
boundary on which we have to impose conditions is the
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Fig.4 A typical error distribution in CSM solution
for parallel condenser. The straight line which
connects points(0,1) and (1,1) is electrode.

electrode of condenser. One can easily recognize that
the maximum absolute error appears on this electrode.

Usually the error becomes large at the middle of
adjacent contour points so we take the following value
as the measure of average error

F = /z’{Ekz/N, (7
k=]

where E, is the error at the middle point between the
k and k+1 th contour points.



5 Numerical Examples X %

5.1 Cylindrical-coaxial strip transmission line Fig.5 Cylindrical coaxial
In Fig.5, a cross-sectional view of the cylindrical- strip transmission

coaxial strip transmission line with x-y coordinate line

system is shown. The straight strip of width 2 is

located inside a shielded cylinder of radius 2. The

strip in a homogeneous dielectric of permittivity g,is

charged to ¢=1v. The contour points on the strip are

determined in the t-plane by dividing the unit circle

into N1 equal parts where N1 is the number of contour

points placed on the strip( the same as the number of

charge points on the sheet 2 of Riemann surface). « ! contour points S+ +

When this unit circle contracts by the ratio Rl , we

designate the position to which the contour points

move as charge points. In the practical calculation ,

all data are given by the value on the z-plane. Hence, 120 -

contour points have values on the straight line which E:QL:j

connects the point (-1,0) and (1,0) while charge points 100k : i

are pleced on a elliptic circle with foci of(-1,0) and a=2W

(1,0). The contour points on the outer cylinder are g0k

determined by dividing the outer circle into N2 equal .

parts and so on.

The characteristic impedance of microstrip trans-—
mission line in a homogeneous dielectric is evaluated
from the electric charge on the strip conductor. It is
easily shown that this value is equal to the summation
of charges Qk on Riemann surface. The line capacitance 20
CO is - -

X

X &3 source points

po— -

6Qr -

YerZo (Q)
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N1
o= 3 Q/¢ (8) Ll ) [
k=1 0.5 0.7 1.0 2.0 Ww/b 5.0
and the characteristic impedance Z0 is

Fig.6 Cross-section of the rectangular-coaxial
Zo = 1/CO/VO s (9 transmission line and its characteristic
: . impedance
where VO is the velocity of light in free space. When
N1 =16,N2=24,R1=0.1 and R2=0.5, the capacitance §,C0 =

Table I C ; £ calculated results
4.558728405900 is obtained. The accuracy of this value abe * “omparisons of catcutarec Teew

is higher than 10_10. Preseat Tippet &
5.2 Rectangular-coaxial strip transmission 1ine4 Case Chang(4)
Fig.6 shows the cross-section of the rectangular- Average potential
coaxial transmission line and its characteristic a/b | w/b %o () error (%) Zo(R)
impedance Z0 against W/b for a/W=2. The arrangement of
contour and charge points near and on the strip is the 1 0.80 54.636 0.034 54,54
same as that in the previous case. Table 1 shows a
comparison of the calculated values of Z0 for several 1 0.50 87.038 0.014 87.03
a/b and W/b and those obtained by Tippet and Chang
using a conformal maping method. 2 0.50 99.841 0.008 99.82
5.3 Cylindrical-coaxial strip transmission 1ine5 with a
circular arc strip 2 1.00 64.104 0.012 64.10

This technique is also applicable for curved strips.

In Fig.7, the cross-section of a cylindrical-coaxial L a « |
line with a circularly curved strip and its character- b/a=2.0 Ga
istic impedance Z0 for various geometries are shown. In 90 Q’ "
the case of b/a=2 and c¢/a=1.5 , the calculated values "
of Z0 are 18.422, 26.479 and 47.075 for X= 90, 60 and .

30, respectively.
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Fig.7 Cross-section of the cylindrical-coaxial trans-
mission line and its characteristic impedance.
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